sharingan Pictures, Images and Photos

Sabtu, 23 Juli 2011

Super Nova ( Ledakan Bintang ) ?


Supernova adalah ledakan dari suatu bintang di galaksi yang memancarkan energi lebih banyak dari nova. Peristiwa supernova ini menandai berakhirnya riwayat suatu bintang. Bintang yang mengalami supernova akan tampak sangat cemerlang dan bahkan kecemerlangannya bisa mencapai ratusan juta kali cahaya bintang tersebut semula, beberapa minggu atau bulan sebelum suatu bintang mengalami supernova bintang tersebut akan melepaskan energi setara dengan energi matahari yang dilepaskan matahari seumur hidupnya, ledakan ini meruntuhkan sebagian besar material bintang pada kecepatan 30.000 km/s (10% kecepatan cahaya)dan melepaskan gelombang kejut yang mampu memusnahkan medium antarbintang.

Ada beberapa jenis Supernova. Tipe I dan II bisa dipicu dengan satu dari dua cara, baik menghentikan atau mengaktifkan produksi energi melalui fusi nuklir. Setelah inti bintang yang sudah tua berhenti menghasilkan energi, maka bintang tersebut akan mengalami keruntuhan gravitasi secara tiba-tiba menjadi lubang hitam atau bintang neutron, dan melepaskan energi potensial gravitasi yang memanaskan dan menghancurkan lapisan terluar bintang.

Rata-rata supernova terjadi setiap 50 tahun sekali di galaksi seukuran galaksi Bima Sakti. Supernova memiliki peran dalam memperkaya medium antarbintang dengan elemen-elemen massa yang lebih besar. Selanjutnya gelombang kejut dari ledakan supernova mampu membentuk formasi bintang baru


Jenis-jenis Supernova

 

Berdasarkan pada garis spektrum pada supernova, maka didapatkan beberapa jenis supernova :
Supernova Keples
  • Supernova Tipe Ia
Pada supernova ini, tidak ditemukan adanya garis spektrum Hidrogen saat pengamatan.
  • Supernova Tipe Ib/c
Pada supernova ini, tidak ditemukan adanya garis spektrum Hidrogen ataupun Helium saat pengamatan.
  • Supernova Tipe II
Pada supernova ini, ditemukan adanya garis spektrum Hidrogen saat pengamatan.
  • Hipernova
Supernova tipe ini melepaskan energi yang amat besar saat meledak. Energi ini jauh lebih besar dibandingkan energi saat supernova tipe yang lain terjadi.

Berdasarkan pada sumber energi supernova, maka didapatkan jenis supernova sebagai berikut.
  • Supernova Termonuklir (Thermonuclear Supernovae)
    • Berasal dari bintang yang memiliki massa kecil
    • Berasal dari bintang yang telah berevolusi lanjut
    • Bintang yang meledak merupakan anggota dari sistem bintang ganda.
    • Ledakan menghancurkan bintang tanpa sisa
    • Energi ledakan berasal dari pembakaran Karbon (C) dan Oksigen (O)
  • Supernova Runtuh-inti (Core-collapse Supernovae)
    • Berasal dari bintang yang memiliki massa besar
    • Berasal dari bintang yang memiliki selubung bintang yang besar dan masih membakar Hidrogen di dalamnya.
    • Bintang yang meledak merupakan bintang tunggal (seperti Supernova Tipe II), dan bintang ganda (seperti supernova Tipe Ib/c)
    • Ledakan bintang menghasilkan objek mampat berupa bintang neutron ataupun lubang hitam (black hole).
    • Energi ledakan berasal dari tekanan

Tahapan terjadinya Supernova

 

Suatu bintang yang telah habis masa hidupnya, biasanya akan melakukan supernova. Urutan kejadian terjadinya supernova adalah sebagai berikut.
  • Pembengkakan
Bintang membengkak karena mengirimkan inti Helium di dalamnya ke permukaan. Sehingga bintang akan menjadi sebuah bintang raksasa yang amat besar, dan berwarna merah. Di bagian dalamnya, inti bintang akan semakin meyusut. Dikarenakan penyusutan ini, maka bintang semakin panas dan padat.
  • Inti Besi
Saat semua bagian inti bintang telah hilang, dan yang tertinggal di dalam hanyalah unsur besi, maka kurang dari satu detik kemudian suatu bintang memasuki tahap akhir dari kehancurannya. Ini dikarenakan struktur nuklir besi tidak memungkinkan atom-atom dalam bintang untuk melakukan reaksi fusi untuk menjadi elemen yang lebih berat.
  • Peledakan
Pada tahap ini, suhu pada inti bintang semakin bertambah hingga mencapai 100 miliar derajat celcius. Kemudian energi dari inti ini ditransfer menyelimuti bintang yang kemudian meledak dan menyebarkan gelombang kejut. Saat gelombang ini menerpa material pada lapisan luar bintang, maka material tersebut menjadi panas. Pada suhu tertentu, material ini berfusi dan menjadi elemen-elemen baru dan isotop-isotop radioaktif.
  • Pelontaran
Gelombang kejut akan melontarkan material-material bintang ke ruang angkasa


Dampak dari Supernova

Supernova memiliki dampak bagi kehidupan di luar bintang tersebut, di antaranya:
  • Menghasilkan Logam
Pada inti bintang, terjadi reaksi fusi nuklir. Pada reaksi ini dilahirkan unsur-unsur yang lebih berat dari Hidrogen dan Helium. Saat supernova terjadi, unsur-unsur ini dilontarkan keluar bintang dan memperkaya awan antar bintang di sekitarnya dengan unsur-unsur berat.
  • Menciptakan Kehidupan di Alam Semesta
Supernova melontarkan unsur-unsur tertentu ke ruang angkasa. Unsur-unsur ini kemudian berpindah ke bagian-bagian lain yang jauh dari bintang yang meledak tersebut. Diasumsikan bahwa unsur atau materi tersebut kemudian bergabung membentuk suatu bintang baru atau bahkan planet di alam semesta

 

Peristiwa Supernova yang teramati

Supernova 1994D
Ada satu bintang yang melakukan supernova di ruang angkasa tiap satu detik kehidupan di bumi. Hanya saja, untuk menemukan bintang yang akan melakukan supernova tersebut amatlah sulit. Banyak faktor yang memengaruhi dalam pengamatan supernova. Walaupun begitu, ada beberapa peristiwa supernova yang telah teramati oleh manusia, di antaranya:
  • Supernova 1994D
Dahulu kala, sebuah bintang meledak di tempat yang amat jauh dari bumi. Ledakan itu tampak seperti sebuah titik terang. Ini terjadi di bagian luar dari galaksi NGC 4526, dan dinamakan Supernova 1994D. Sinar yang dipancarkannya selama beberapa minggu setelah ledakan tersebut menunjukkan bahwa supernova tersebut merupakan Supernova Tipe Ia.

 

Detail

Bagi ilmuwan, supernova adalah superstar sesungguhnya - ledakan masif yang dahsyat, bintang mati yang bersinar terang pada bentuk dan nasib dari alam semesta.



Untuk ledakan yang singkat, supernova dapat memancarkan energi lebih besar dari matahari. Dengan potensi energi  sebesar 25 ratus triliun triliun senjata nuklir, mereka dapat lebih cemerlang dari seluruh galaksi, menghasilkan beberapa ledakan terbesar yang pernah terlihat, dan membantu melacak kosmos di kejauhan.
Sekarang, sebuah tim di Princeton telah menemukan cara membuat simulasi komputer ledakan supernova dalam tiga dimensi, yang dapat menambah wawasan ilmiah baru.

Meskipun ledakan raksasa ini telah diamati selama ribuan tahun, selama 50 tahun terakhir para peneliti telah berjuang meniru aksi destruktif ini sedikit demi sedikit pada komputer. Para peneliti berpendapat bahwa simulasi tersebut, bahkan yang kasar, adalah penting, karena dapat memberikan informasi baru tentang alam semesta dan membantu mengatasi masalah lama dalam astrofisika.

Simulasi 3-D terbaru didasarkan pada gagasan bahwa bintang yang runtuh pada dirinya sendiri tidak seperti bola, tapi secara khas asimetris dan dipengaruhi oleh berbagai ketidakstabilan dalam campuran volatil di sekitarnya intinya.

“Saya rasa ini adalah sebuah lompatan besar dalam pemahaman kita tentang bagaimana benda ini dapat meledak,” kata Adam Burrows, seorang profesor ilmu astrofisika di Princeton, yang memimpin penelitian. “Pada prinsipnya, jika Anda bisa masuk ke dalam supernova menuju pusatnya, inilah yang mungkin akan Anda lihat.”

Simulasi ledakan supernova dalam bentuk 3-D dengan menggunakan superkomputer :

  

Simulasi ledakan supernova:

 

Menulis dalam Astrophysical Journal edisi 1 September, Burrows – bersama dengan penulis pertama Jason Nordhaus, seorang peneliti postdoctoral di Princeton, dan Ann Almgren serta John Bell dari Lawrence Berkeley National Laboratory di California – melaporkan bahwa tim Princeton telah mengembangkan simulasi yang dimulai untuk mencocokkan ledakan besar seperti yang pernah disaksikan para astronom saat bintang raksasa mati.

Di masa sebelumnya, simulasi ledakan diwakili dalam satu dan dua dimensi yang sering terhenti, yang menyebabkan para ilmuwan menyimpulkan bahwa pemahaman mereka tentang fisika tidak benar atau tidak lengkap. Tim ini menggunakan prinsip-prinsip fisika yang sama, tetapi dengan menggunakan superkomputer yang berkali-kali lipat lebih powerful, menggunakan representasi dalam tiga dimensi yang memungkinkan berbagai ketidakstabilan multidimensi diekspresikan.

“Ini mungkin bukti yang menjadi kasus bahwa hambatan mendasar kemajuan dalam teori supernova selama beberapa dekade terakhir bukan karena kurangnya detail fisik, tapi kurangnya akses ke kode dan komputer yang dapat digunakan untuk mensimulasikan secara tepat fenomena keruntuhan ke dalam 3-D,” tulis tim. “Ini bisa menjelaskan gerak lambat yang melelahkan sejak 1960-an menuju pendemonstrasian mekanisme ledakan kuat.”


Kelahiran Supernova


Supernova merupakan sumber utama unsur-unsur berat dalam alam semesta. Kecemerlangannya secara konsisten begitu intens di mana supernova telah digunakan sebagai “lilin standar” atau pengukur, bertindak sebagai tolok ukur yang menunjukkan jarak astronomi.

Sebagian besar hasil dari kematian bintang-bintang tunggal jauh lebih besar daripada matahari.
Seiring usia bintang, ia memasok bahan bakar hidrogen dan helium pada intinya. Dengan masih cukupnya massa dan tekanan pada karbon fusi dan menghasilkan unsur-unsur berat lainnya, secara bertahap menjadi berlapis-lapis seperti bawang dengan tingkatan terpadat di pusatnya. Setelah intinya melebihi massa tertentu, ia mulai meledak. Dalam tekanan, inti memanas dan bahkan tumbuh lebih padat.

“Bayangkan mengambil sesuatu yang besar seperti matahari, kemudian memadatkannya ke ukuran Bumi,” kata Burrows. “Lalu, bayangkan ia ambruk ke ukuran Princeton.”
Apa yang terjadi berikutnya bahkan lebih misterius.

Pada titik tertentu, ledakan akan membalik arah. Astrofisikawan menyebutnya “bounce” (pantulan). Bahan inti menegang, bertindak seperti apa yang Burrows sebut sebagai “piston bola”, memancarkan gelombang kejut energi. Neutrino, yaitu partikel lembam, juga dipancarkan. Gelombang kejut dan neutrino ini tidak terlihat.

Kemudian, yang sangat tampak, adanya ledakan besar, dan lapisan luar bintang terlempar ke ruang angkasa. Tahap yang sangat jelas adalah apa yang pengamat lihat sebagai supernova. Apa yang tertinggal adalah obyek ultra-padat yang disebut bintang neutron. Terkadang, ketika sebuah bintang ultra-masif mati, sebuah lubang hitam terbentuk sebagai gantinya.

Para ilmuwan dapat merasakan langkah yang mengarah pada ledakan, tetapi tidak ada kesepakatan proses mendasar tentang apa yang terjadi selama tahap “bounce” ketika ledakan di inti berbalik arah. Bagian yang tersulit adalah adalah bahwa tidak ada yang dapat melihat apa yang terjadi di bagian dalam bintang. Selama fase ini, bintang terlihat tidak terusik. Kemudian, tiba-tiba, gelombang ledakan meletus di permukaannya. Para ilmuwan tidak tahu apa yang terjadi untuk membuat daerah pusat bintang seketika tidak stabil. Emisi neutrino diyakini terkait akan hal itu, tapi tidak ada yang tahu bagaimana atau mengapa.

“Kami tidak tahu apa mekanisme ledakannya,” kata Burrows. “Sebagaimana ahli teori yang ingin sampai ke akar penyebab, ini adalah masalah alami untuk dieksplorasi.”


Ledakan Supernova Paling Cemerlang

Pengamatan melalui Observatorium Sinar-X Chandra yang berbasis antariksa, bersama-sama dengan pengamatan melalui teleskop optik di darat baru-baru ini berhasil merekam terjadinya suatu ledakan supernova. Supernova yang dinamai SN 2006gy tersebut berasal dari ledakan sebuah bintang yang sangat masif, dengan ukuran mencapai 150 kali Matahari.

“Ini betul-betul merupakan ledakan yang sangat besar, ratusan kali lebih berenergi daripada tipikal supernova lain,” jelas Nathan Smith dari University of California at Berkeley, yang memimpin tim astronom dari California dan University of Texas di Austin. “Ini menunjukkan bahwa bintang yang meledak tersebut mungkin adalah bintang yang massanya sedemikian besar, hingga mencapai 150 kali Matahari kita. Kita belum pernah melihat yang semacam ini sebelumnya.”

Para astronom memperkirakan bahwa banyak diantara bintang-bintang generasi pertama memiliki massa sebesar itu, dan supernova ini dapat menyediakan pangelihatan yang langka mengenai bagaimana bintang generasi pertama menemui ajalnya. Sebelumnya, para astronom belum pernah menemui bintang semasif itu maupun menyaksikan kematiannya. Penemuan supernova ini menyodorkan bukti bahwa kematian sebuah bintang masif ternyata sangat berbeda secara mendasar dengan prediksi teoretis.

 Gambar Ilustrasi dari SN2006gy beserta citra dari Observatorium Lick dan Chandra (Gambar: NASA/CXC/M.Weiss; X-ray: NASA/CXC/UC Berkeley/N.Smith et al.; IR: Lick/UC Berkeley/J.Bloom & C.Hansen)

Pengamatan melalui Chandra memungkinkan para astronom untuk mengembangkan penjelasan alternatif yang lebih umum untuk supernova: sebuah bintang kerdil putih dengan massa hanya sedikit lebih besar dari Matahari yang meledak dalam lingkungan yang padat dan kaya akan hidrogen. Namun dalam skenario ini, SN 2006gy seharusnya memancarkan sinar-X dalam intensitas hingga 1000 kali dari yang telah dideteksi oleh Chandra.

“Hal ini merupakan bukti kuat bahwa SN 2006gy adalah akhir dari hidup sebuah bintang yang teramat masif,” jelas Dave Pooley dari University of California at Berkeley yang memipin observasi menggunakan Observatorium Sinar-X Chandra.

Bintang yang menjadi cikal bakal SN 2006gy sepertinya telah melepaskan sejumlah besar massanya sebelum kemudian meledak. Pelepasan massa dalam jumlah besar ini sama dengan yang terlihat di Eta Carinae, sebuah bintang masif di galaksi kita. Hal ini meningkatkan kecurigaan bahwa Eta Carinae mungkin juga akan segera meledak menjadi sebuah supernova. Walaupun SN2006gy adalah supernova yang paling cemerlang yang pernah diamati, ia berada di galaksi NGC 1260, 240 juta tahun cahaya dari kita. Di sisi lain, Eta Carinae hanya berjarak 7500 tahun cahaya di dalam galaksi Bimasakti.

“Kami masih belum tahu secara pasti apakah Eta Carinae akan segera meledak, namun kami akan tetap mengamatinya sebagai antisipasi,” demikian diungkapkan Mario Livio dari Space Telescope Science Institute di Baltimore, yang tidak terlibat dalam riset ini. Apabila Eta Carinae meledak, cahayanya akan begitu cemerlang sehingga akan tampak meski pada siang hari di Bumi.

Supernova biasanya terjadi saat sebuah bintang yang masif kehabisan bahan bakar hidrogennya dan runtuh oleh gravitasinya sendiri. Dalam kasus SN 2006gy, para astronom memikirkan skenario yang berbeda. Dalam kondisi tertentu, inti sebuah bintang masif memancarkan sedemikian banyaknya radiasi sinar gama sehingga sebagian energi dari radiasi berubah menjadi pasangan partikel dan anti-partikel. Hal ini menyebabkan penurunan tingkat energi yang menyebabkan bintang itu runtuh oleh gravitasi raksasanya.

Setelah runtuh, reaksi termonuklir yang masih terjadi menyebabkan bintang yang bersangkutan meledak, melontarkan sisa-sisanya ke antariksa. Data dari SN 2006gy menunjukkan bahwa ledakan supernova semacam ini pada bintang-bintang generasi pertama — yang tidak melahirkan lubang hitam sebagaimana diteorikan — mungkin lebih umum daripada yang dipercaya selama ini
.
Ada perbedaan yang besar diantara kedua kemungkinan tersebut. Seperti dijelaskan oleh Smith, dalam skenario pertama, ledakan supernova menyebarkan elemen baru dalam jumlah besar ke antriksa, sementara pada yang lainnya, elemen-elemen yang dihasilkan akan terkurung untuk selamanya dalam lubang hitam. (chandra.harvard.edu)


Crab Supernova


 Crab supernova 1054 Crab Supernova adalah sebuah supernova yang dilihat di Bumi secara luas pada tahun 1054. Crab Supernova merupakan kejadian aneh dan menakjubkan, dengan mudah dilihat mata telanjang di siang hari selama 23 hari dan di langit malam selama 653 hari. Nenek moyang bintang ini terletak di galaksi Bima Sakti pada jarak 6.300 tahun







Semuga bisa bermanfaat.



Sumber 1, 2, 3, 4


Editing By : Wong Nga Liem ( Aliem Wong ) 

Kamis, 21 Juli 2011

Penjelasan Dan Fakta Tentang Black Hole ?




Lubang hitam atau Black Hole adalah sebuah pemusatan massa yang cukup besar sehingga menghasilkan gaya gravitasi yang sangat besar.

Gaya gravitasi yang sangat besar ini mencegah apa pun lolos darinya kecuali melalui perilaku terowongan kuantum. Medan gravitasi begitu kuat sehingga 8kecepatan lepas di dekatnya mendekati kecepatan cahaya.
Misteri lubang hitam yg bertebaran di jagad raya dapat dikatakan hampir mirip dengan konserp rentetan kejadian-kejadian aneh yg terjadi di kawasan Segitiga Bermuda.

Tp berbeda dg kasus-kasus di Segitiga Bermuda yg rata-rata menelan kapal laut maupun pesawat terbang, black hole dapat berukuran lbh besar dari matahari dan mampu menarik dan menelan apa saja yg berada di dekat nya termasuk planet-planet.Bahkan partikel cahaya pun tidak mampu untuk meloloskan diri dari tarikan gravitasi black hole yg super dashyat.

Istilah “lubang hitam” telah tersebar luas, meskipun ia tidak menunjuk ke sebuah lubang dalam arti biasa, tetapi merupakan sebuah wilayah di angkasa di mana semua tidak dapat kembali.




Proses Terbentuk nya Black Hole

Teori lubang hitam dikemukakan lebih dr 200 tahun yg lalu.Pada 1783 , ilmuwan John Mitchell mencetuskan teori mengenai kemungkinan wujud nya sebuah lubang hitam setelah beliau meneliti dan mengkaji teori gravitas Isaac Newton.

Beliau berpendapat, jika objek yg dilemparkan tegak lurus ke atas, maka ia akan terlepas dr pengaruh gravitasi Bumi setelah mencapai kecepatan lebih dr 11 km/s, maka tentu ada planet atau bintang lain yg memiliki gravitasi lebih besar daripada Bumi.

Istilah “lubang hitam” pertama kali digunakan oleh ahli fisika Amerika Serikat, John Archibald Wheeler pada 1968. Wheeler memberi nama demikian karena lubang hitam tidak dapat dilihat, karena cahaya turut tertarik ke dalam nya sehingga kawasan di sekitar nya menjadi gelap.

Menurut teori evolusi bintang, lubang hitam berasal dr sejenis bintang biru yang memiliki suhu permukaan lebih dari 25.000 derajat Celcius.

Ketika pembakaran hidrogen di bintang biru yg memakan waktu kira-kira 19 juta tahun selesai, ia akan menjadi bintang biru raksasa.


Kemudian,bintang itu menjadi dingin dan menjadi bintang merah raksasa. Dalam fase itulah,akibat tarikan gravitasi nya sendiri, bintang merah raksasa mengalami ledakan dahsyat atau sering disebut dengan Supernova dan menghasilkan 2 jenis bintang yaitu bintang Netron dan Black Hole.



Pertumbuhan Black Hole

Massa dari lubang hitam terus bertambah dengan cara menangkap semua materi didekatnya. Semua materi tidak bisa lari dari jeratan lubang hitam jika melintas terlalu dekat. Jadi obyek yang tidak bisa menjaga jarak yang aman dari lubang hitam akan tersedot. Berlainan dengan reputasi yang disandangnya saat ini yang menyatakan bahwa lubang hitam dapat menyedot apa saja disekitarnya, lubang hitam tidak dapat menyedot material yang jaraknya sangat jauh dari dirinya. dia hanya bisa menarik materi yang lewat sangat dekat dengannya. Contoh : bayangkan matahari kita menjadi lubang hitam dengan massa yang sama. Kegelapan akan menyelimuti bumi dikarenakan tidak ada pancaran cahaya dari lubang hitam, tetapi bumi akan tetap mengelilingi lubang hitam itu dengan jarak dan kecepatan yang sama dengan saat ini dan tidak tersedot masuk kedalamnya. Bahaya akan mengancam hanya jika bumi kita berjarak 10 mil dari lubang hitam, dimana hal ini masih jauh dari kenyataan bahwa bumi berjarak 93 juta mil dari matahari. Lubang hitam juga dapat bertambah massanya dengan cara bertubrukan dengan lubang hitam yang lain sehingga menjadi satu lubang hitam yang lebih besar.




Fakta  Mengenai Black Hole

Para astronom meyakini bahwa sebagian besar (mungkin 90% atau lebih) materi di alam semesta tidak dapat terdeteksi dengan teleskop besar sekalipun. Dan materi itulah yang dinamakan dark matter (materi gelap). Mereka tidak tampak, walaupun diyakini keberadaanya secara tidak langsung. Salah satu kelompok matarei gelap itu adalah black hole. Black hole diyakini ada di pusat galaksi. Black hole itu super amat sangat padatnya, hingga gravitasinya luar biasa besarnya.

Massa dari lubang hitam terus bertambah dengan cara menangkap semua materi didekatnya. Semua materi tidak bisa lari dari jeratan lubang hitam jika melintas terlalu dekat. Jadi obyek yang tidak bisa menjaga jarak yang aman dari lubang hitam akan terhisap. Berlainan dengan reputasi yang disandangnya saat ini yang menyatakan bahwa lubang hitam dapat menghisap apa saja disekitarnya, lubang hitam tidak dapat menghisap material yang jaraknya sangat jauh dari dirinya. dia hanya bisa menarik materi yang lewat sangat dekat dengannya.


Mengenai bobotnya, Black Hole seberat bumi itu diameternya kurang dari satu sentimeter saja. Dan Black Hole seberat matahari itu diamenternya hanya 3 km. Black hole bisa terbentuk dari inti bintang raksasa yang meledak sebagai supernova. Bagian luarnya tampak hancur berhamburan ke luar, tetapi intinya memadat ke dalam. Kepadatan black hole dapat diumpamakan bila bola matahari yang berdiameter 1,4 juta km (109 kali diameter bumi) dan bermassa 2 milyar milyar milyar (dengan 27 angka nol) ton dimampatkan hingga diameternya hanya 3 km.

Black Hole ukuran sedang itu beratnya 10.000.000.000.000.000.000.000.000.000.000 kilogram, atau 10 pangkat 31, dan memiliki diameter hanya 30 km saja. Ada banyak Black Hole di pusat galaksi kita dan galaksi – galaksi lain, salah satunya memiliki berat jutaan kali dari massa matahari. Dan sebagian ilmuwan mengatakan bahwa dalam sistem tata surya kita di galaksi Bima Sakti juga terdapat Black Hole /Lubang Hitam.


Setelah hampir selama 30 tahun berkeyakinan bahwa Lubang Hitam (black hole) menelan dan menghancurkan segala sesuatu yang terperangkap di dalamnya, fisikawan antariksa Stephen Hawking berubah pikiran. Hawking mengaku telah salah meletakkan argumen kunci tentang perilaku lubang hitam itu.

Hukum – hukum fisika kuantum menyatakan, informasi – informasi itu tidak mungkin hilang sepenuhnya. Hawking dan teman – temannya berpendapat medan gravitasi ekstrem dari lubang hitam dapat menjadi pengecualian dari hukum – hukum itu. Radius sebuah Lubang Hitam (Rs) = 2MG/v2. Di mana M adalah massa Lubang Hitam, G adalah konstanta Gravitasi, dan v adalah kecepatan yang dibutuhkan suatu objek untuk menghindar dari gaya tarik gravitasi. Untuk kasus lubang hitam v adalah c atau kecepatan cahaya.

Dalam konferensi internasional tentang Relativitas Umum dan Gravitasi ke-17, Juli 2004, Hawking mengumumkan apa yang ia percayai keliru. Menurut dia, informasi yang ditelan lubang hitam mungkin bisa ditelusuri kembali dalam bentuk yang membingungkan. Ini memungkinkan penyatuan teori gravitasi dan mekanika kuantum.

Informasi – informasi yang ada dalam Lubang Hitam itu ternyata memungkinkan untuk melepaskan diri. Temuan barunya itu bahkan dapat membantu memecahkan paradoks informasi di lubang hitam yang selama ini menjadi teka – teki besar dalam fisika modern. “Saya telah memikirkan tentang permasalahan ini selama 30 tahun terakhir, dan saya kira kini saya telah memiliki jawabannya” kata Hawking.

Menurutnya, sebuah Lubang Litam hanya muncul untuk membentuk diri tetapi belakangan membuka diri dan melepaskan informasi tentang apa yang telah terjatuh ke dalamnya. Jadi kita dapat memastikan tentang masa lalu dan memprediksikan yang akan datang.


Paradoks dan Teori Lainnya.



Jika informasi benar – benar hilang dalam Lubang Hitam, maka ada beberapa prinsip mekanika kuantum yang dilanggar. Yang pertama adalah prinsip mikroreversibilitas. Sebagaimana pendapat para peneliti di The Center for Nuclear Studies GWU Washington DC, paradigma mekanika kuantum, setiap proses fisis dapat dibalik kejadiannya.

Maka informasi akhir bisa digunakan menelusuri informasi awal proses. Lubang hitam adalah sumber irreversibilitas di semesta karena salah satu pasangan partikel yang tercipta pada produksi pasangan berada di luar cakrawala peristiwa tidak mengandung bit informasi tentang apa yang terjadi di sisi dalam cakrawala peristiwa.

Prinsip mekanika kuantum selanjutnya yang dilanggar adalah unitarity. Propagasi informasi dari keadaan awal ke keadaan akhir secara matematis mengalami evolusi yang unitary. Artinya, fluks dijamin utuh. Menurut Preskill, profesor informasi kuantum di California Institute of Technology (Caltech), yang terjadi pada lubang hitam adalah keadaan awal informasi yang murni berevolusi menjadi keadaan yang bercampur. Keadaan ini melanggar prinsip unitarity.

Lebih parah lagi, prinsip kekekalan energi juga harus dilanggar. Dalam kekekalan energi hilangnya informasi dalam bentuk materi harus diiringi terciptanya energi sangat besar. Jika paradoks ini benar, alam semesta akan bersuhu sekitar 1.031 derajat hanya dalam beberapa detik, yang dalam kenyataan tidak terjadi.


 (eramuslim, telegraph, wikipedia)


Cakram gas


Dengan sifatnya yang tidak bisa dilihat, pertanyaan kemudian adalah bagaimana mendeteksi adanya suatu lubang hitam? Kesempatan yang paling baik untuk mendeteksinya, diakui para ahli, adalah bila ia merupakan bintang ganda (dua bintang yang berevolusi dan saling mengelilingi). Lubang hitam akan menyedot semua materi dan gas-gas hasil ledakan termonuklir bintang di sekitarnya. Dari gesekan internal, gas-gas yang tersedot itu akan menjadi sangat panas (hingga 2 juta derajat!) dan memancarkan sinar-X. Dari sinar-X inilah para ahli memulai langkah untuk menjejak lubang hitam.

Pada 12 Desember 1970, AS meluncurkan satelit astronomi kecil (Small Astronomical Satellite SAS) pendeteksi sinar-X di kosmis bernama Uhuru dari lepas pantai Kenya. Dari hasil pengamatannya didapatkan bahwa sebuah bintang maha raksasa biru, yakni HDE226868 yang terletak dalam konstelasi Cygnus (8.000 tahun cahaya dari bumi) mempunyai pasangan bintang Cygnus X-1, yang tidak dapat dideteksi secara langsung.

Cygnus X-1 menampakkan orbitnya berupa gas-gas hasil ledakan termonuklir HDE226868 yang bergerak membentuk sebuah cakram. Cygnus X-1 diperhitungkan berukuran lebih kecil dari Bumi, tapi memiliki massa enam kali lebih besar dari massa matahari. Bintang redup ini telah diyakini para ilmuwan sebagai lubang hitam. Selain Cygnus X-1, Uhuru juga mendapatkan sumber sinar-X kosmis, yakni Cygnus X-3 dalam konstelasi Centaurus dan Lupus X-1 dalam konstelasi bintang Lupus. Dua yang disebut terakhir belum dipastikan sebagai lubang hitam, termasuk 339 sumber sinar-X lainnya yang dideteksi selama 2,5 tahun masa operasi Uhuru.

Eksplorasi sumber sinar-X di kosmis masih dilanjutkan oleh satelit HEAO (High Energy Astronomical Observatory) atau Einstein Observatory tahun 1978. Satelit ini menemukan bintang ganda yang lain dalam konstelasi Circinus, yakni Circinus X-1 serta V861 Scorpii dan GX339-4 dalam konstelasi bintang Scorpius.
Tahun 1999, dengan biaya 2,8 milyar dollar, AS masih meluncurkan teleskop Chandra, guna menyingkap misteri lubang hitam. The Chandra X-ray Observatory sepanjang 45 kaki milik NASA ini telah berhasil membuat ratusan gambar resolusi tinggi dan menangkap adanya lompatan-lompatan sinar-X dari pusat galaksi Bima Sakti berjarak 24.000 tahun cahaya dari Bumi. Mencengangkan, karena bila memang benar demikian (lompatan sinar-X itu) menunjukkan adanya sebuah lubang hitam di jantung Bima Sakti, maka teori Albert Einstein kembali benar. Ia menyatakan, bahwa di jantung setiap galaksi terdapat lubang hitam!




“Dugaan semacam itu sungguh sangat dekat dengan kenyataan,” kata Frederick Baganoff yang memimpin penelitian, September 2001, kepada Reuters di Washington. Para ilmuwan pun mulai melebarkan pencarian terhadap putaran gas di sekitar tepi-tepi jurang ketiadaan ini, layaknya mencari pusaran air.
Pencarian lubang hitam dan kebenaran teori-teori yang mendukungnya memang masih terus dilakukan para ahli, seiring makin majunya teknologi dan ilmu pengetahuan. Pertanyaan kemudian, bila lubang hitam bertebaran di kosmis, apakah nanti pada saat kiamat, monster ini pula yang akan melenyapkan benda-benda jagat raya? (ron)

Bila ditelusuri istilah lubang hitam, sebenarnya belum lah lama populer. Dua kata ini pertama kali diangkat oleh fisikawan AS bernama John Archibald Wheeler pada tahun 1968. Wheeler memberi nama demikian karena singularitas ini tak bisa dilihat. Mengapa demikian? Penyebabnya tidak lain karena cahaya tak bisa lepas dari kungkungan gravitasi singularitas yang maha dahsyat ini. Daerah di sekitar singularitas atau lazimnya disebut sebagai Horizon Peristiwa (radiusnya dihitung dengan rumus jari-jari Schwarzschild R = 2GM/C2 dimana G = 6,67 x 10-11 Nm2kg-2, M = kg massa lubang hitam, C = cepat rambat cahaya) menjadi gelap. Itulah sebabnya, wilayah ini disebut sebagai lubang hitam.

Dengan tidak bisa lepasnya cahaya, serta merta sekilas kita bisa membayangkan sendiri kira-kira seberapa besar gaya gravitasi dari lubang hitam. Untuk mulai menghitungnya, ingatlah bahwa cepat rambat cahaya di alam mencapai 300 juta meter per detik. Masya Allah. Lalu, apalah jadinya bila benar sebuah wahana buatan manusia tersedot ke dalam lubang hitam? Dalam hitungan sepersejuta detik saja, tentunya dapat dipastikan wahana tersebut sudah remuk menjadi bubur.

Lebih dua ratus tahun silam, atau tepatnya pada tahun 1783. pemikiran akan adanya monster kosmis bersifat melenyapkan benda lainnya ini sebenarnya pernah dilontarkan oleh seorang pendeta bernama John Mitchell. Mitchell yang kala itu mencermati teori gravitasi Isaac Newton (1643-1727) berpendapat, bila bumi punya suatu kecepatan lepas dari Bumi 11 km per detik (sebuah benda yang dilemparkan tegak lurus ke atas baru akan terlepas dari pengaruh gravitasi bumi setelah melewati kecepatan ini), tentu ada planet atau bintang lain yang punya gravitasi lebih besar. Mitchell malah memperkirakan di kosmis terdapat suatu bintang dengan massa 500 kali matahari yang mampu mencegah lepasnya cahaya dari permukaannya sendiri.




 
Lalu, bagaimana sebenarnya lubang hitam tercipta? Menurut teori evolusi bintang (lahir, berkembang, dan matinya bintang), buyut dari lubang hitam adalah sebuah bintang biru. Bintang biru merupakan julukan bagi deret kelompok bintang yang massanya lebih besar dari 1,4 kali massa matahari. Disebutkan para ahli fisika kosmis, ketika pembakaran hidrogen di bintang biru mulai usai (kira-kira memakan waktu 10 juta tahun), ia akan berkontraksi dan memuai menjadi bintang maha raksasa biru. Selanjutnya, ia akan mendingin menjadi bintang maha raksasa merah. Dalam fase inilah, akibat tarikan gravitasinya sendiri, bintang maha raksasa merah mengalami keruntuhan gravitasi menghasilkan ledakan dahsyat atau biasa disebut sebagai Supernova.

Supernova ditandai dengan peningkatan kecerahan cahaya hingga miliaran kali cahaya bintang biasa kemudian melahirkan dua kelas bintang, yakni bintang netron dan lubang hitam. Bintang netron (disebut juga Pulsar atau bintang denyut) terjadi bila massa bintang runtuh lebih besar dari 1,4 kali, tapi lebih kecil dari tiga kali massa matahari. Sementara lubang hitam mempunyai massa bintang runtuh lebih dari tiga kali massa matahari. Materi pembentuk lubang hitam kemudian mengalami pengerutan yang tidak dapat mencegah apapun darinya. Bintang menjadi sangat mampat sampai menjadi suatu titik massa yang kerapatannya tidak terhingga, yang disebut singularitas tadi.

Di dalam kaidah fisika, besaran gaya gravitasi berbanding terbalik dengan kuadrat jarak atau dirumuskan F µ 1/r2. Dari formula inilah kita bisa memahami mengapa lubang hitam mempunyai gaya gravitasi yang maha dahsyat. Dengan nilai r yang makin kecil atau mendekati nol, gaya gravitasi akan menjadi tak hingga besarnya.
Para ilmuwan menghitung, seandainya benda bermassa seperti bumi kita ini akan menjadi lubang hitam, agar gravitasinya mampu mencegah cahaya keluar, maka benda itu harus dimampatkan menjadi bola berjari-jari 1 cm!


Fakta Lainya  mengenai BlackHole

 

Cahaya melengkung begitu dalam di dekat lubang hitam sehingga apabila Anda berada dekatnya dan berdiri membelakangi, Anda akan dapat melihat berbagai bayangan dari setiap bintang di jagat raya, dan dapat melihat bagian belakang dari kepala Anda sendiri.

Di bagian dalam sebuah lubang hitam, ketentuan-ketentuan soal jarak dan waktu berlaku kebalikan: seperti halnya saat ini Anda tidak dapat menghindar dari perjalanan menuju masa depan, di dalam lubang hitam Anda tidak dapat mengelak dari singularitas sentral.

Apabila Anda berdiri pada sebuah jarak aman dari lubang hitam dan melihat seorang teman terjatuh ke dalamnya, dia akan terlihat bergerak melamban dan hampir berhenti ketika sampai di tepian event horizon. Bayangan teman itu akan memudar dengan sangat cepat. Sayangnya, dari sudut pandangnya sendiri dia akan melintasi event horizon dengan aman, dan akan bertemu dengan ajalnya di singularitas.

Lubang-lubang hitam adalah objek-objek yang paling sederhana di jagat raya. Anda dapat menggambarkannya secara utuh dengan hanya mengetahui massa, olakan, dan muatan listriknya. Sebaliknya, untuk melukiskan secara utuh sebutir debu saja, Anda harus menjelaskan posisi dan kondisi seluruh atomnya

.

Seperti yang ditemukan Hawking, lubang-lubang hitam dapat menguap, tetapi dengan sangat lambat. Bahkan untuk seukuran massa sebuah gunung akan bertahan selama sepuluh miliar tahun, dan untuk massa yang sama dengan matahari proses penguapan akan selesai setelah 10^ 67 tahun.

Lubang hitam tidak meradiasikan cahaya, dan sebuah objek yang terjatuh ke dalamnya tidak akan mampu lagi memancarkan cahayanya. Semua itu menjadikan upaya mendeteksi lubang hitam akan sangat menantang. Hanya ketika sebuah lubang hitam berada dalam wujudnya yang kembar dan efek gravitasi menyebabkan pasangannya itu menghasilkan gas, kita dapat mendeteksi sinar-X. Sinar yang berasal dari piringan-piringan di sekitar lubang hitam terlihat sangat mirip dengan sinar yang berasal dari piringan-piringan di sekitar bintang-bintang neutron.

Anda dapat pula menduga keberadaan sebuah lubang hitam di pusat sejumlah galaksi apabila bintang-bintang bergerak sangat cepat di sekitar sejumlah objek yang tidak terlihat.

Pernah adanya pendapat dari Prof.JownKin.H.Steel :

Bahwa “Suatu hari nanti Bumi Beserta WAKTU-WAKTU-nya akan terserap habis oleh Monster Gravity ini”


Sumber A and Sumber B


Editing By  : Wong Nga Liem ( Aliem Wong )

9 Aurora Terindah

Aurora adalah fenomena pancaran cahaya yang menyala-nyala pada lapisan ionosfer dari sebuah planet sebagai akibat adanya interaksi antara medan magnetik yang dimiliki planet tersebut dengan partikel bermuatan yang dipancarkan oleh matahari (angin matahari). 9 aurora paling indah..



Di bumi, aurora terjadi di daerah di sekitar kutub utara dan kutub selatan magnetiknya. Aurora yang terjadi di daerah sebelah Utara dikenal dengan nama Aurora Borealis, yang dinamai Dewi Fajar, Aurora, dan nama Yunani untuk angin utara, Boreas. Ini karena di Eropa, aurora sering terlihat kemerah-merahan di ufuk utara seolah-olah matahari akan terbit dari arah tersebut. Aurora borealis selalu terjadi di antara September dan Oktober dan Maret dan April.
Berikut adalah aurora borealis terindah yang pernah tertangkap mata kamera”
1.
2. 


3.


4.

 5.

 6.


7.

8.

9.


12 Tempat Dengan Pemandangan Paling Menakjubkan di Bumi

1. Puncak Himalaya Tibet

Tempat ini adalah titik tertinggi di seluruh planet Bumi.



2. Langit Alaska
 
 Sinar Aurora Borealis yang ada di Langit Alaska (ujung utara Amerika, dekat Kutub Utara) ini bikin takjub banget! Aurora itu sendiir adalah cahaya natural di angkasa yang terjadi akibat tabrakan partikel-partikel medan magnet bumi dengan atom dan molekul dari atas atmosfer bumi. Generally, ada 2 warna yaitu hijau dan merah dan hanya bisa dilihat pada waktu malam.


3. Benteng Chittogarh, India
 

4. Cinque Terre, Riviera

  Salah satu tujuan wisata paling populer di Italia ini merupakan bagian dari UNESCO World Heritage Site dan terletak di pinggir laut Mediterania.



5. College The Valleyfield

 
 Sebuah universitas pendidikan di Quebec, Canada. 


6. Machu Picchu
   
Terletak di Lembah Urumba, Peru dan memiliki ketinggian 2.430 meter di atas permukaan laut. 



7. Massif De La Chartreuse

 
Sebuah formasi batu-batuan di pegunungan timur Perancis.





8. Laut Arktik
  
berdayung santai di laut Arktik yang sejernih Kristal dan berada di wilayah Kutub Utara Bumi. 


9. Petra


Petra adalah sebuah kota yang dibentuk di dalam sebuah gunung batu di Yordania. Dibangun 100 tahun SM oleh bangsa Nabatean dengan aliran sungai di bawah tanah.


10. Gunung Tungurahua, Ekuador
 



11. Oasis In the Middle of Nowhere

  
this amazing place is built in the middle of the desert, around a small lake, dan tepatnya berada di Ica Province- southwestern Peru. Oasis bernama Huacachina ini dikenal sebagai ‘oasis of America’.




12. Millau Bridge in France

Paris also have another icon yaitu jembatan tertinggi di dunia yang bangunannya lebih tinggi dari Menara Eiffel dan menembus batas awan! Wow.. bisa bayangin nggak sih ada jembatan nembus awan?? kayak gimana ya rasanya pas lewat di atas jembatan ini? Jembatan bernama Millau ini melintasi Sungai Tarn dan lembah-lembah pegunungan Massive Central. panjang jembatan hingga 2,5 km dan tingginya 340 meter (lebih tinggi 16 meter dari Menara Eiffel), jembatan ini udah dirancang dengan kekuatan tahan gempa oleh seorang arsitek asal Inggris bernama Norman Foster.



Sumber 

Sinar Spiral Raksasa Muncul di Langit Norwegia

Fenomena misterius terjadi di langit Norwegia, Selasa 8 Desember 2009 malam. Fenomena alam berupa cahaya berbentuk spiral besar di langit membuat ribuan penduduk tercengang.


anyak teori bermunculan. Saksi mata dari kawasan Trondelag sampai Finnmark mengira, spiral raksasa itu datang dari roket milik Rusia. Ada juga yang menduga fenomena aneh itu disebabkan meteor, aurora, gelombang atau bahkan UFO.



Saksi mata mengatakan mereka melihat cahaya biru yang memancar dari belakang gunung. Cahaya itu lalu berhenti di tengah langit, kemudian mulai berputar. Hanya beberapa detik, lalu terlihat spiral raksasa di langit. Setelah itu, cahaya hijau muncul dari tengah spiral, bertahan 10 hingga 12 menit, sebelum akhirnya menghilang sama sekali. (Vivanews-Mail Online)


 








Sumber

Foto Fenomena Alam Yang sangat Luar Biasa

1. Moonbows / Pelangi Bulan


 Pelangi terjadi karena matahari bersinar pada tetesan-tetesan air embun, biasanya terjadi pada atmosfir setelah hujan. Moonbow lebih jarang terjadi, hanya dapat dilihat pada malam hari ketika bulan ada pada titik rendah pada saat bulan purnama sampai hampir purnama. Satu tempat popular untuk melihat Moonbow adalah di air terjun Cumberland di kentucky AS. 


2. Mirages / Fatamorgana

 


Fatamorgana muncul ketika cahaya terbias dan menghasilkan gambar dari suatu object atau langit padahal sebenarnya tidak ada. Fenomena ini biasanya terjadi di permukaan panas, seperti jalan aspal atau gurun pasir.  


3. Belt of Venus

 The Venus Belt / Sabuk Venus adalah fenomena yang muncul pada saat senja yang berdebu ketika sekumpulan langit kemerahan dan kecoklatan muncul diantara langit dan cakrawala. 

 

 

4. Noctilucent Cloud / Awan Noctilucent

 Awan Noctilucent adalah awan yang sangat tinggi secara atmosfir yang membiaskan cahaya pada senja ketika matahari telah tenggelam, mengiluminasi/menyinari langit dengan sumber cahaya yang tak tampak.

 

5. Aurora Borealis

 Pada belahan dunia selatan juga dikenal dengan nama Aurora Australis, Aurora Borealis adalah partikel bermuatan listrik dari matahari yang telah mencapai bagian teratas atmosfir bumi dan menjadi sangat aktif. Aurora biasanya sering terlihat di daerah dekat kutub dan pada waktu dimana siang dan malam sama panjang.

 

6. Mammatus Clouds / Awan Mammatus

 

  Bentuk awan yang aneh ini sering diasosiasikan dengan badai, dan tidak dapat dimengerti sepenuhnya bagaimana awan ini terbentuk. 

 

7. Fire Whirls / Pusaran Api

 Fire whirls / pusaran api adalah tornado yang berputar terlalu dekat dengan kebakaran hutan atau pusaran yang terbentuk karena terdapat terlalu banyak panas di area tersebut. 

 

9. Sun Pillars / Pilar Matahari

 Sun pillars / pilar matahari timbul ketika matahari yang tenggelam memantulkan tinggi awan es pada lapisan yang berbeda. Hal ini menghasilkan pilar cahaya yang tinggi menjulang hingga ke langit. sangat mungkin juga untuk menyaksikan moon pilar atau pilar bulan.

 

10. Virga

 Virga adalah fenomena yang terjadi saat kristal es di awan jatuh, namun menguap sebelum menyentuh tanah. Virga muncul seperti ekor / jejak dari awan yang menggapai permukaan tanah, kadangkala membentuk awan seperti ubur-ubur. 

 

11.Katabatic Winds / Awan Katabatic

 Ini adalah angin yang membawa udara padat dari tempat yang lebih tinggi ke tempat yang lebih rendah karena gravitasi. Katabatic winds dikenal secara lokal sebagai santa ana (california selatan), mistral (mediterania), Bora (laut adriatic) Oroshi (jepang), Pitaraq(greenland), dan wailliwaw (tierra del fuego). Williwaw dan angin yang bergerak di atas antartika biasanya berbahaya, bertiup dengan kecepatan 100 knot. 

 

12. Fire Rainbow / Pelangi Api

 Fire rainbow adalah fenomena yang sangat jarang yang muncul hanya pada saat matahari sedang tinggi yang membuat sinarnya melewati awan cirrus yang tinggi yang berisi kristal-kristal es. 

 

13. Green Ray

 Juga dikenal dengan nama Green Flash. Fenomena ini muncul sangat singkat sebelum matahari benar-benar tenggelam dan setelah matahari terbit. Fenomena ini muncul sebagai kilatan / cahaya hijau diatas matahari yang berlangsung sangat cepat, biasanya hanya beberapa saat. Hal ini muncul karena pembiasan cahaya di atmosfir.

 

 

14. Ball Linghning / Bola Petir

 Ini adalah fenomena yang sangat langka yang melibatkan petir / kilat berbentuk bola yang bergerak lebih lambat dari kilat normal. Telah dilaporkan besar dari bola petir ini sebesar 8 kaki dan dapat menyebabkan kerusakan parah. Ada laporan bahwa ball lightning menghancurkan keseluruhan bangunan.

 

 

 

sumber

 

 
Design by Wordpress Theme | Bloggerized by Free Blogger Templates | coupon codes